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Deposits of dipolar particles are investigated by means of extensive Monte Carlo simulations. We found that
the effect of the interactions is described by an initial, nonuniversal, scaling regime characterized by orienta-
tionally ordered deposits. In the dipolar regime, the order and geometry of the clusters depend on the strength
of the interactions and the magnetic properties are tunable by controlling the growth conditions. At later stages,
the growth is dominated by thermal effects and the diffusion-limited universal regime obtains, at finite tem-
peratures. At low temperatures the crossover size increases exponentially asT decreases and atT=0 only the
dipolar regime is observed.
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The growth of deposits by irreversible aggregation of par-
ticles is of great technological importance as well as of the-
oretical interest. A variety of mechanisms are involved in the
growth processes but at late times scaling laws depending
only on a few parameters have been observed. A general
assumption, which describes the patterns found in many ex-
periments, is that the deposition process is dominated by
thermal diffusion. A simple model for this type of growth is
diffusion-limited deposition(DLD) [1], characterized by the
formation of branched, fractal structures similar to those
found in electrodeposition, dielectric breakdown, etc.(see
[2] and references therein). Under certain circumstances,
however, interparticle interactions, favoring ordered struc-
tures that compete with the randomness of the diffusion pro-
cess, are required to describe the observed growth patterns. A
case in point is the diffusion-limited deposition of magnetic
particles subject to dipolar interactions.

Dipolar interactions are essential in determining the rich
variety of structures exhibited by magnetic materials[3], and
their interplay with thermal diffusion may lead to novel mag-
netic properties. On the theoretical side, dipolar interactions
provide a simple model to study the effects of anisotropic,
long-ranged interactions on far from equilibrium aggregation
processes. The central question concerns the change in the
fractal dimension of the aggregates,D, as the dipolar inter-
actions are switched on. Meakin and Muthukumar[4] con-
sidered the effect of isotropic long-ranged, 1/re, interactions
in reaction-limited cluster-cluster aggregation(CCA) mod-
els. They found thatD is unchanged for short-ranged
interactions— i.e., foreù2D0 whereD0 is the fractal dimen-
sion of the noninteracting aggregates, while for longer-
ranged interactionsD may change substantially. Accordingly,
numerical results for diffusion-limitted aggregation(DLA ),
performed for particles with Ising spins(short-range interac-
tions), revealed no changes in the fractal dimension of the
aggregates with increasing exchange interactions[5]. Finally,
results for DLA [6] of dipolar particles indicate thatD de-
creases as the strength of the dipolar interactions increases,
in line with the results for CCA of dipolar particles[7] and

with experimental results for the aggregation of magnetic
microspheres[8], but in disagreement with preliminary re-
sults of ours[9].

In this article we report results of extensive Monte Carlo
simulations that provide a general framework where the ap-
parently contradictory results described above may be under-
stood. We show that the initial stage of two-dimensional di-
polar DLD growth is indeed described by a new
nonuniversal scaling regime, characterized by clusters(trees)
whose shape and fractal dimension are temperature depen-
dent. For large enough systems, however, the dipolar regime
crosses over to the diffusion-driven universal regime, where
the effect of the dipolar interactions is dominated by thermal
effects. It is also shown that the dipolar regime corresponds
to orientationally ordered deposits and that the onset of the
universal regime coincides with the disappearance of the ori-
entational order. AtT=0 only the dipolar regime is observed.

In the new dipolar regime, the orientational order as well
as the shape and fractal dimension of the clusters depends on
the strength of the interactions. Thus, the magnetic properties
of dipolar deposits may be tuned by controlling the growth
conditions, such as temperature. Finally, we found that the
fractal dimension of the entire deposit is always given by the
universal(diffusion-driven) value, implying that in the dipo-
lar regime, the trees have a fractal dimensionDt that differs
from that of the entire deposit.

We consider a two-dimensional box of sideL and height
H on a square grid of sidea=1. Periodic boundary condi-
tions are applied parallel to the substrate, of sizeL, and par-
ticles are dropped from a finite height above it. The particles
carry a dipole moment of strengthm and interact through the
pair potential

f1,2= −
m2

r12
3 f3sm̂1 · r̂ 12dsm̂2 · r̂ 12d − m̂1 · m̂2g, s1d

wherer12 is the distance between particles 1 and 2,r̂ 12 is the
two-dimensional unit vector along the interparticle axis, and
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m̂1 and m̂2 are the three-dimensional unit vectors in the di-
rection of the dipole moments of particles 1 and 2, respec-
tively. A particle is released at a heightHin with a dipole
moment oriented at random. The particle undergoes a ran-
dom walk through a series of jumps to nearest-neighbor
sites, while interacting with the particles in the deposit. At
each step a new position and a new random three-
dimensional dipole orientation are accepted according to a
simple Metropolis rule based on the difference between the
dipolar energies of the two configurations and defining the
effective temperatureT* =kBTa3/m2. The long range of the
dipolar interactions is taken into account by an Ewald sum-
mation for the slab geometry of the system[9]. In the limit
T* →` all displacements are accepted and the model reduces
to DLD. A particle will eventually(i) contact the deposit or
the substrate, sticking to it irreversibly as its dipole relaxes
along the local field[10], or (ii ) reach a height greater than
Hout, when it is removed and a new particle released. See
[9,11] for details of the simulation.

Simulations were carried out at four temperaturesT*

=10−1, 10−2, 10−3, and 10−4 and four system sizes,L=200,
400, 800, and 1600 with 20 000, 30 000, 50 000, and
100 000 particles per deposit, respectively. The deposits are
similar to those of DLD: they consist of many small trees
competing to grow[9]. As the number of particles in the
deposit increases, fewer and fewer trees keep on growing due
to shadowing until only a single tree survives.

We start by investigating the dependence of the heightH
and the widthW of a tree with its sizes (number of par-
ticles), as well as the distribution of treesns— i.e., the aver-
age number of trees of a given size. In DLD the trees scale as
[2,12,13]

H , sni, W, sn', ns , s−t, s2d

for sufficiently large values ofs. Owing to the finite size of
the simulation box, however, only a single tree survives
when the number of deposited particles is large enough, and
thus at larges the width of the tree saturatessW<Ld; then,
the height grows linearly with its sizesH~sd andns exhibits
a discontinuity.

The difference betweenni and n' measures the aniso-
tropy of the trees. Ifni=n', the trees are isotropic and their
fractal dimension isDt=1/ni, whereas if anisotropy is
present,Dt becomes[2]

Dt = 1 + s1 − nid/n'. s3d

We note that the assumption that the deposit has the same
fractal dimension as the trees,D=Dt, which holds in DLD, is
not warranted in general.D was estimated through the aver-
age particle density at heighth, rshd, which was found to
scale as in DLD: at early times the deposit builds up until it
reaches a heighthi. Then, we found a scaling regime where
the density decreases as a power law of the height,rshd
,h−a, with D=2−a [2]. The density saturates when the lat-
eral correlation lengthji reaches the size of the system, at
hs,Lg. Simple arguments show[2] that the exponentsni, t
anda are related through

a = 1 − s2 − td/ni. s4d

We have verified Eq.(2) by calculating the average maximal

height and width of the largest tree,H̄ssd=khssdl, W̄ssd
=kwssdl, as a function of the tree sizes and n̄s=knsl. Here
hssd andwssd are the maximal height and width of the largest
tree of each deposit, andk¯l is an average over all the
deposits.

Figures 1 and 2 show the results forH̄ssd and W̄ssd ob-

FIG. 1. (Color online) Average heightH̄ssd and widthW̄ssd as a
function of the size of the tree,s, at T* =10−1 and various system
sizes. The lines are power laws(2) with the exponents listed in
Table I. Dashed line: universal regime.

FIG. 2. (Color online) Average heightH̄ssd and widthW̄ssd as a
function of the size of the tree,s, at T* =10−3 and various system
sizes. The lines are power laws(2) with the exponents listed in
Table I. Solid line: dipolar regime. Dashed line: universal regime.
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tained atT* =10−1 andT* =10−3 for different box sizes. The
points are histograms on a logarithmic scale. As expected,
the results atT* =10−1 correspond to those of DLD. Scaling
was found for a wide range ofsss.10d, after a crossover
from the early stage regimess,10d. The crossover to the
linear regime(only-one-tree growth) was observed only for
the smallest systemL=200, fors.5000(not shown). ni and
n' calculated for eachL were found independent of system
size; a representative value was obtained by averaging over
all L with the uncertainty estimated as the largest deviation
from the mean. Power-law regressions for different ranges of
s yield ni=0.64s1d. The crossover to saturation of the width
was observed for sizes up toL=800. Fitting only points that
exhibit clear data collapse yieldsn'=0.60s2d. These expo-
nents agree with previous results for DLD[12] and show that
at high temperatures the universal behavior of the geometri-
cal properties of the trees is unaffected by the dipolar inter-
actions.

At T* =10−3, however, the existence of two scaling re-
gimes is apparent, in particular for the largest systemL
=1600, where the width saturation and the linear regimes are
not observed. Fors less than the crossover sizes* <500 we
found ni=0.74s1d and n'=0.78s2d. These exponents differ
from those of DLD and characterize a new growth regime
that we call thedipolar regime. Fors.s* , we obtained,ni

=0.64s1d andn'=0.60s2d, in line with the results for DLD.
Similar behavior was observed at the other two
temperatures—that is, a dipolar regime with temperature-
dependent exponents followed by a second scaling regime
with DLD exponents.

In Table I we list the exponents of the dipolar and univer-
sal regimes, obtained at various temperatures. These results
indicate that, if Eq.(2) is assumed, the effect of the dipolar
interactions may be described by the appearance of a dipolar
regime characterized by nonuniversal exponentsni and n'

that increase with decreasing temperature. The crossover to
the universal regime occurs at tree sizes that increase as the
temperature decreases. As a consequence, the universal re-
gime is difficult to observe at very low temperatures. How-
ever, at finiteT* , the universal regime may be reached if
large enough deposits are grown. Indeed, we found no de-
pendence of the crossover between the dipolar and universal
regimes onL, and thus at any temperature there is anL
above which this crossover may be observed. This implies
that the geometrical properties of the trees may be tuned by

controlling the dipolar interactions and the system size. In
particular, it is possible to deposit trees with a given aniso-
tropy by growing trees(at a fixed temperature) with a fractal
dimension that is determined by the tree size. Alternatively,
at fixed tree size, one may control the anisotropy by chang-
ing the temperature.

In Fig. 3, we plot the results for the tree distribution at
T* =10−1 and T* =10−3. At T* =10−1, the results are those of
DLD. Scaling behavior was observed for a range ofs be-
tween 10 and the maximum tree size(which depends onL),
with an exponentt=1.54s2d in line with results for DLD
[12]. At T* =10−3, assuming the crossover to occur ats*

<500, we estimatedt in the ranges 10,s,s* (dipolar re-
gime) and s* ,s,5000 (universal regime). We found
1.40(2) and 1.56(4), respectively, for both systems. Thus, as
for the tree height and width, we found a dipolar regime for
the tree distribution, characterized by a temperature-
dependent exponent. Again, the crossover to the universal
regime occurs for sizes that increase as the temperature de-
creases. This crossover was not observed atT* =10−4: due to
the limited number of deposits and decreasing density, the
number of trees larger thans<500–1000 was too small to

TABLE I. Characteristic exponents of the dipolar DLD model,ni, n', andt obtained from the simulation;
other exponents obtained using the equations indicated in brackets.

T* regime ni n' t a t s4d Dt s3d Dt;1/ni

`sDLDd universal 0.630(2) 0.580(4) 1.56(2) 0.288(2) 1.551(3) 1.64(1) 1.59(1)

10−1 universal 0.64(1) 0.60(1) 1.54(2) 0.29(1) 1.55(1) 1.60(3) 1.56(2)

10−2 dipolar 0.70(3) 0.69(3) 1.46(3) 0.27(1) 1.49(3) 1.43(8) 1.43(6)

10−2 universal 0.63(2) 0.60(4) 1.53(4) 0.30(1) 1.56(2) 1.63(7) 1.59(5)

10−3 dipolar 0.75(2) 0.77(2) 1.40(2) 0.24(1) 1.44(2) 1.32(5) 1.33(4)

10−3 universal 0.64(1) 0.60(2) 1.56(4) 0.28(1) 1.55(1) 1.60(3) 1.56(2)

10−4 dipolar 0.83(3) 0.83(3) 1.36(3) 0.25(1) 1.38(3) 1.20(7) 1.20(4)

FIG. 3. (Color online) Average number of trees of sizes divided
by Lsn̄s/Ld as a function ofs, at various temperatures and system
sizes. Lines as in Fig. 2.
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be analyzed. Thus, at this temperature only the dipolar re-
gime was observed, witht=1.36s3d.

We have used Eqs.(3) and(4) to verify the consistency of
the exponents and to estimateDt. In addition, we have
checked the validity of Eq.(4) in the dipolar regime and
comparedDt in both regimes.a was estimated in both re-
gimes by power-law regressions ofrshd in the regions sug-

gested by the plots ofH̄l (using data fromL=1600). We
found weak crossovers at the temperaturesT* =10−2 and
10−3, similarly to what was observed forn̄s. The results listed
in Table I indicate a remarkable consistency between the
values oft obtained from simulation and using Eq.(4). It is
also clear that the fractal dimension of the trees in the dipolar
regime decreases with decreasing temperature, in line with
previous studies of DLA dipolar aggregates[6,7].

The connection between the orientational order of the di-
poles and the geometrical properties of the deposits was in-
vestigated by comparing the mean-square magnetization
density in thex andy directions at heighth, kmx,y

2 shdl, with
the mean particle density at the same height,rshd. These
results are shown in Fig. 4. It is apparent that the density
saturates at the same height as the mean-square magnetiza-
tions and that the onset of the scaling behavior ofr coincides
with that of kmy

2l. Notice also the heighth†<300, where
kmx

2l=kmy
2l and the orientational order vanishes. Thath† sig-

nals the disappearance of orientational order is seen most
clearly in the inset of Fig. 3. The latter shows that the diag-

onal elementsQxxshd and Qyyshd of the ordering matrixQ
become identical ath=h†, beyond whichQxx=Qyy=1/4 [11].
We also found thath† does not depend onL, but increases
with decreasingT* . At low T* , the increase is exponential,
h†.exps1/T*d. This functional dependence was obtained
from a direct estimation of the heights at which the orienta-
tional order of the deposits vanishes. Depending on the tem-
perature and system size,h† is larger or smaller thanhs and
this is related to the existence of the dipolar and universal
regimes: whenh†,hs both universal and dipolar regimes
occur, but only the latter is found whenh†.hs. We recalcu-
lated the scaling exponents assuming that the crossover be-
tween the dipolar and universal regimes occurs ath=h†

[equivalently, ats† estimated usingH̄ssd] and found that they
are identical with those of Table I. Therefore, the dipolar
regime is characterized by deposits with orientational order.
As a consequence and in contrast to what happens in DLD,
the fractal dimension of the deposits depends both on the
fractal dimension of the trees,Dt, and on the distribution of
the trees,t. In the light of this, the decreasingDtsT*d re-
ported in [7,8] is to be expected, since it was determined
from the radius of gyration versus the(small) number of
particles of each cluster. Furthermore, the results of[6], ob-
tained for a single DLA cluster, may be interpreted as the
crossover from the temperature-dependent fractal dimension
at short length scales, toD.1.7, at long length scales[6].

We have also estimated the average interaction of a dipo-
lar particle with similar particles in ordered and randomly
oriented deposits numerically, and confirmed that for ordered
deposits the interaction decays more slowly than 2D0f;2
3DtsT=`d<3.28g while for random ones it decays faster, in
line with the results of[4] for isotropic systems[14]. Finally,
we have checked that the global fractal dimension of the
deposits is unaffected(or very weakly affected) by the dipo-
lar interactions. This was found by analyzing the decay of
the mean density withh, the scaling ofhs, and of the density
at saturation withL, the two-point density-density correlation
function, the initial divergence of the interface width, and the
mean height of the upper surface. In every case no significant
deviation from DLD was found[14].
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